Universal Metric Spaces According to W. Holsztynski

نویسندگان

  • W. Holsztynski
  • Sergei Ovchinnikov
چکیده

In this note we show, following W. Holsztynski, that there is a continuous metric d on R such that any finite metric space is isometrically embeddable into (R, d). Let M be a family of metric spaces. A metric space U is said to be a universal space for M if any space from M is (isometrically) embeddable in U . Fréchet [2] proved that l (the space of all bounded sequences of real numbers endowed with the sup norm) is a universal space for the family M of all separable metric spaces. Later, Uryson [5] constructed an example of a separable universal space for this M (l is not separable). In this note we establish the following result which is Theorem 5 in [3]. Theorem 1. There exists a metric d in R, inducing the usual topology, such that every finite metric space embeds in (R, d). Our proof essentially follows the original Holsztynski’s approach [4]. We say that a metric space (X, d) is ε–dispersed if d(x, y) ≥ ε for all x 6= y in X (ε > 0). Clearly, any ε– metric space is also ε–dispersed for any positive ε < ε. The following proposition will be used to construct universal spaces for particular families M. Proposition 1. Let f : X → Y be a continuous surjection from a metric space (X, d) onto a metric space (Y,D). Then (X, dε) where dε(x, y) = max{min{d(x, y), ε}, D(f(x), f(y))} (1) is a universal space for the family of ε–dispersed subspaces of (Y,D) and metrics d and dε are equivalent on X.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

W-convergence of the proximal point algorithm in complete CAT(0) metric spaces

‎In this paper‎, ‎we generalize the proximal point algorithm to complete CAT(0) spaces and show‎ ‎that the sequence generated by the proximal point algorithm‎ $w$-converges to a zero of the maximal‎ ‎monotone operator‎. ‎Also‎, ‎we prove that if $f‎: ‎Xrightarrow‎ ‎]-infty‎, +‎infty]$ is a proper‎, ‎convex and lower semicontinuous‎ ‎function on the complete CAT(0) space $X$‎, ‎then the proximal...

متن کامل

Unique common coupled fixed point theorem for four maps in $S_b$-metric spaces

In this paper we prove a unique common coupled fixed point theorem for two pairs of $w$-compatible mappings in $S_b$-metric spaces satisfying a contrctive type condition. We furnish an example to support our main theorem. We also give a corollary for Junck type maps.

متن کامل

Coincidence Producing Operators on a Large Fixed Point Structure

In this paper we investigate the following problem (see I.A. Rus, Fixed Point Structure Theory, Cluj Univ. Press, Cluj-Napoca, 2006, pp. 193-194): Let X be a set with structure and (X,S(X),M) be a large fixed point structure on X. Let U ∈ S(X). An operator p : U → U is by definition coincidence producing operator on (X,S(X),M) if for each f ∈M(U) there exists u ∈ U such that f(u) = p(u). The pr...

متن کامل

Some notes on ``Common fixed point of two $R$-weakly commuting mappings in $b$-metric spaces"

Very recently, Kuman et al. [P. Kumam, W. Sintunavarat, S. Sedghi, and N. Shobkolaei. Common Fixed Point of Two $R$-Weakly Commuting Mappings in $b$-Metric Spaces. Journal of Function Spaces, Volume 2015, Article ID 350840, 5 pages] obtained some interesting common fixed point results for two mappings satisfying generalized contractive condition in $b$-metric space without the assumption of the...

متن کامل

Coupled coincidence point and common coupled fixed point theorems in complex valued metric spaces

In this paper, we introduce the concept of a w-compatible mappings and utilize the same to discuss the ideas of coupled coincidence point and coupled point of coincidence for nonlinear contractive mappings in the context of complex valued metric spaces besides proving existence theorems which are following by corresponding unique coupled common fixed point theorems for such mappings. Some illus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008